If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2-120X-625=0
a = 1; b = -120; c = -625;
Δ = b2-4ac
Δ = -1202-4·1·(-625)
Δ = 16900
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{16900}=130$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-120)-130}{2*1}=\frac{-10}{2} =-5 $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-120)+130}{2*1}=\frac{250}{2} =125 $
| M2=(55-x) | | -59=-6x-5x-4 | | 5m-1-3m=2m+5 | | M2=(55-x)• | | -6(-4x-2)=60 | | 2w+7-w=3+w+4 | | 12x-2=15x-17 | | (7x-4)=(5x+19) | | 27x=26x+4 | | -7(-3b-4)=-119 | | -6c−6=-7c | | 5(3a-3)-7=23 | | 6+7x=-5-8(x+6) | | 6^3x-3=56 | | 9−3z=-1−5z−10 | | 1/4k=3(−41k+3) | | -6+7r=8r+4 | | x/21=-26 | | 4x+188°=6x+216° | | 7/94=b/94 | | 4=x/6+x/7 | | -1−8p=-8−9p | | -w+10=-2w | | 8/11=x/22 | | -9+6z=5z | | -27k=0 | | -7+4q=-3q | | -140=-14a | | 2p/3-1/4=1/3 | | 42+11+x=90 | | 2x+2(3x-6)=3(x-5) | | 1−3s=9−s |